[YOLOv8] Sort segmentation model masks in top-down fashion (HTR)

I trained a segmentation model of YOLOv8 as HTR, to segment lines of text in an image (manuscript, book). When predicting, I get the masks sorted by confidence (torch.argsort(scores, descending=True). Is there a way to sort the masks top-down and left-to-right/right-to-left, I mean, like how a book is read?

My code so far:

from pathlib import Path

import cv2
import numpy as np

from ultralytics import YOLO

m = YOLO("/home/incognito/yolov8/runs/segment/train/weights/best.pt")
res = m.predict("/home/incognito/yolov8/datasets/sam_v1/images/a34e234a-76be-5392-9b39-4abdcd051719.jpg")

# Iterate detection results
for r in res:
    img = np.copy(r.orig_img)
    img_name = Path(r.path).stem

    # Iterate each object contour
    for ci, c in enumerate(r):
        label = c.names[c.boxes.cls.tolist().pop()]

        b_mask = np.zeros(img.shape[:2], np.uint8)

        # Create contour mask
        contour = c.masks.xy.pop().astype(np.int32).reshape(-1, 1, 2)
        _ = cv2.drawContours(b_mask, [contour], -1, (255, 255, 255), cv2.FILLED)

        # Choose one:

        # OPTION-1: Isolate object with black background
        mask3ch = cv2.cvtColor(b_mask, cv2.COLOR_GRAY2BGR)
        isolated = cv2.bitwise_and(mask3ch, img)

        # OPTION-2: Isolate object with transparent background (when saved as PNG)
        #isolated = np.dstack([img, b_mask])

        # OPTIONAL: detection crop (from either OPT1 or OPT2)
        x1, y1, x2, y2 = c.boxes.xyxy.cpu().numpy().squeeze().astype(np.int32)
        iso_crop = isolated[y1:y2, x1:x2]
        cv2.imwrite(f"{img_name}_{ci}.jpg", iso_crop)

The segmented image: