Hello @merve I am unfortunately not allowed to share my application because it must remain private. However I can share my
requirements.txt
and app.py
.
absl-py==1.4.0
aiohttp==3.8.4
aiosignal==1.3.1
appnope==0.1.3
asttokens==2.2.1
async-timeout==4.0.2
attrs==22.2.0
backcall==0.2.0
blis==0.7.9
boto3==1.26.91
botocore==1.29.91
brotlipy==0.7.0
cachetools==5.3.0
catalogue==2.0.8
certifi==2021.10.8
click==8.1.3
conda==4.3.16
confection==0.0.4
contourpy==1.0.7
cycler==0.11.0
cymem==2.0.7
datasets==2.10.1
decorator==5.1.1
dill==0.3.6
evaluate==0.4.0
executing==1.2.0
filelock==3.9.1
fonttools==4.39.0
frozenlist==1.3.3
fsspec==2023.3.0
gensim==4.3.1
google-auth==2.16.2
google-auth-oauthlib==0.4.6
greenlet==2.0.2
grpcio==1.51.3
huggingface-hub==0.13.2
importlib-metadata==6.1.0
importlib-resources==5.12.0
ipython==8.11.0
jedi==0.18.2
Jinja2==3.1.2
jmespath==1.0.1
joblib==1.2.0
kiwisolver==1.4.4
langcodes==3.3.0
Markdown==3.4.1
MarkupSafe==2.1.2
matplotlib==3.7.1
matplotlib-inline==0.1.6
multidict==6.0.4
multiprocess==0.70.14
murmurhash==1.0.9
nltk==3.8.1
numpy==1.24.2
oauthlib==3.2.2
packaging==23.0
pandas==1.5.3
parso==0.8.3
pathy==0.10.1
pexpect==4.8.0
pickleshare==0.7.5
Pillow==9.4.0
preshed==3.0.8
prompt-toolkit==3.0.38
protobuf==4.22.1
ptyprocess==0.7.0
pure-eval==0.2.2
pyarrow==11.0.0
pyasn1==0.4.8
pyasn1-modules==0.2.8
pycosat==0.6.3
pydantic==1.10.6
Pygments==2.14.0
pyparsing==3.0.9
python-dateutil==2.8.2
pytz==2022.7.1
PyYAML==6.0
regex==2022.10.31
requests-oauthlib==1.3.1
responses==0.18.0
rsa==4.9
s3transfer==0.6.0
scikit-learn==1.2.2
scipy==1.10.1
sentence-transformers==2.2.2
sentencepiece==0.1.97
setfit==0.6.0
smart-open==6.3.0
spacy==3.5.1
spacy-legacy==3.0.12
spacy-loggers==1.0.4
SQLAlchemy==2.0.6
srsly==2.4.6
stack-data==0.6.2
tensorboard==2.12.0
tensorboard-data-server==0.7.0
tensorboard-plugin-wit==1.8.1
thinc==8.1.9
threadpoolctl==3.1.0
tokenizers==0.13.2
--extra-index-url https://download.pytorch.org/whl/cu113
torch==1.13.1
torchvision==0.14.1
traitlets==5.9.0
transformers==4.26.1
typer==0.7.0
typing_extensions==4.5.0
wasabi==1.1.1
wcwidth==0.2.6
Werkzeug==2.2.3
xxhash==3.2.0
yarl==1.8.2
zipp==3.15.0
altair<5
catboost
The app looks like this:
import streamlit as st
from huggingface_hub import Repository
import os
from argparse import ArgumentParser
import torch
torch.cuda.empty_cache()
from run_bert import run_bert, get_datasets, report_gpu
if __name__ == "__main__":
models_list = ["ltg/norbert2", "ltg/norbert"]
test_params = [("ltg/norbert2", 128, 256, 0.001), ("ltg/norbert2", 256, 256, 0.001), ("ltg/norbert2", 320, 256, 0.001),
("ltg/norbert2", 512, 256, 0.001), ("ltg/norbert", 320, 256, 0.001),
("ltg/norbert", 512, 256, 0.001), ("NbAiLab/nb-bert-base", 320, 256, 0.001),
("NbAiLab/nb-bert-base", 512, 256, 0.001)]
st.write("Number of tests: ", len(test_params))
for model_name, bs, ml, lr in test_params:
parser = ArgumentParser()
parser.add_argument("--batch_size", action="store", type=int, default=bs)
parser.add_argument("--lr", action="store", type=float, default=lr)
parser.add_argument("--epochs", action="store", type=int, default=20)
parser.add_argument("--num_threads", action="store", type=int, default=0)
parser.add_argument("--bert_model_name", default=model_name)
parser.add_argument("--unit_type", default="all_units")
parser.add_argument("--freeze", default=True)
parser.add_argument("--seed_value", default=2023)
parser.add_argument("--stop_after", default=3)
parser.add_argument("--max_len", default=ml)
parser.add_argument("--oversample", default=False)
args = parser.parse_args()
st.write(f"{args.bert_model_name} - {args.lr} - {args.batch_size} - {args.max_len} - Oversampled: {args.oversample} - Frozen: {args.freeze}")
run_bert(args)
st.write(f"Done with {args.bert_model_name}.")
report_gpu()
Thank you so much for your interest!