Dataset map preprocess throws ArrowInvalid

I’m using wav2vec2 for emotion classification (following @m3hrdadfi’s notebook). In the dataset preprocessing step using .map(), it throws an error, and I’m not sure what is triggering it in the first place. So, any pointer resolving it would be much appreciated. Thanks!

(also, gently pinging @lhoestq and @patrickvonplaten)

Code Reference:

# Loading the created dataset using datasets
from datasets import load_dataset, load_metric

data_files = {
    "train": "/content/data/train.csv", 
    "validation": "/content/data/test.csv",

dataset = load_dataset("csv", data_files=data_files, delimiter="\t", )
train_dataset = dataset["train"]
eval_dataset = dataset["validation"]

# We need to specify the input and output column
input_column = "path"
output_column = "emotion"

# we need to distinguish the unique labels in our SER dataset
label_list = train_dataset.unique(output_column)
label_list.sort()  # Let's sort it for determinism
num_labels = len(label_list)
# print(f"A classification problem with {num_labels} classes: {label_list}")

from transformers import AutoConfig, Wav2Vec2Processor

model_name_or_path = "arijitx/wav2vec2-large-xlsr-bengali"
pooling_mode = "mean"

# config
config = AutoConfig.from_pretrained(
    label2id={label: i for i, label in enumerate(label_list)},
    id2label={i: label for i, label in enumerate(label_list)},
setattr(config, 'pooling_mode', pooling_mode)

processor = Wav2Vec2Processor.from_pretrained(model_name_or_path,)
target_sampling_rate = processor.feature_extractor.sampling_rate
# print(f"The target sampling rate: {target_sampling_rate}")

"""So far, we downloaded, loaded, and split the SER dataset into train and test sets. The instantiated our strategy configuration for using context representations in our classification problem SER. Now, we need to extract features from the audio path in context representation tensors and feed them into our classification model to determine the emotion in the speech.

Since the audio file is saved in the `.wav` format, it is easy to use **[Librosa](** or others, but we suppose that the format may be in the `.mp3` format in case of generality. We found that the **[Torchaudio](** library works best for reading in `.mp3` data.

An audio file usually stores both its values and the sampling rate with which the speech signal was digitalized. We want to store both in the dataset and write a **map(...)** function accordingly. Also, we need to handle the string labels into integers for our specific classification task in this case, the **single-label classification** you may want to use for your **regression** or even **multi-label classification**.

def speech_file_to_array_fn(path):
    speech_array, sampling_rate = torchaudio.load(path)
    resampler = torchaudio.transforms.Resample(sampling_rate, target_sampling_rate)
    speech = resampler(speech_array).squeeze().numpy()
    return speech

def label_to_id(label, label_list):

    if len(label_list) > 0:
        return label_list.index(label) if label in label_list else -1

    return label

def preprocess_function(examples):
    speech_list = [speech_file_to_array_fn(path) for path in examples[input_column]]
    target_list = [label_to_id(label, label_list) for label in examples[output_column]]

    result = processor(speech_list, sampling_rate=target_sampling_rate)
    result["labels"] = list(target_list)

    return result

train_dataset =
    # num_proc=4
eval_dataset =
    # num_proc=4

Error Reference:

/usr/local/lib/python3.7/dist-packages/numpy/core/ VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray
  return array(a, dtype, copy=False, order=order)
ArrowInvalid                              Traceback (most recent call last)
<ipython-input-47-fc0bb5a1a9e1> in <module>()
      2     preprocess_function,
      3     batch_size=8,
----> 4     batched=True,
      5     # num_proc=4
      6 )

13 frames
/usr/local/lib/python3.7/dist-packages/datasets/ in map(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, num_proc, suffix_template, new_fingerprint, desc)
   1684                 new_fingerprint=new_fingerprint,
   1685                 disable_tqdm=disable_tqdm,
-> 1686                 desc=desc,
   1687             )
   1688         else:

/usr/local/lib/python3.7/dist-packages/datasets/ in wrapper(*args, **kwargs)
    183         }
    184         # apply actual function
--> 185         out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs)
    186         datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out]
    187         # re-apply format to the output

/usr/local/lib/python3.7/dist-packages/datasets/ in wrapper(*args, **kwargs)
    395             # Call actual function
--> 397             out = func(self, *args, **kwargs)
    399             # Update fingerprint of in-place transforms + update in-place history of transforms

/usr/local/lib/python3.7/dist-packages/datasets/ in _map_single(self, function, with_indices, input_columns, batched, batch_size, drop_last_batch, remove_columns, keep_in_memory, load_from_cache_file, cache_file_name, writer_batch_size, features, disable_nullable, fn_kwargs, new_fingerprint, rank, offset, disable_tqdm, desc)
   2036                             else:
   2037                                 batch = cast_to_python_objects(batch)
-> 2038                                 writer.write_batch(batch)
   2039                 if update_data and writer is not None:
   2040                     writer.finalize()  # close_stream=bool(buf_writer is None))  # We only close if we are writing in a file

/usr/local/lib/python3.7/dist-packages/datasets/ in write_batch(self, batch_examples, writer_batch_size)
    401             typed_sequence = OptimizedTypedSequence(batch_examples[col], type=col_type, try_type=col_try_type, col=col)
    402             typed_sequence_examples[col] = typed_sequence
--> 403         pa_table = pa.Table.from_pydict(typed_sequence_examples)
    404         self.write_table(pa_table, writer_batch_size)

/usr/local/lib/python3.7/dist-packages/pyarrow/table.pxi in pyarrow.lib.Table.from_pydict()

/usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.asarray()

/usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.array()

/usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib._handle_arrow_array_protocol()

/usr/local/lib/python3.7/dist-packages/datasets/ in __arrow_array__(self, type)
    105                 out = numpy_to_pyarrow_listarray(
    106             else:
--> 107                 out = pa.array(, type=type)
    108             if trying_type and out[0].as_py() !=[0]:
    109                 raise TypeError(

/usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib.array()

/usr/local/lib/python3.7/dist-packages/pyarrow/array.pxi in pyarrow.lib._sequence_to_array()

/usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.pyarrow_internal_check_status()

/usr/local/lib/python3.7/dist-packages/pyarrow/error.pxi in pyarrow.lib.check_status()

ArrowInvalid: Can only convert 1-dimensional array values

Hi ! What version of datasets are you using ?
Also do you know what kind of arrays the Wav2vec2Processor returns ? Ideally it should be numpy arrays

1 Like

Hi @lhoestq ! Thanks for helping…

Here’s the transformers and datasets version I’m using-
datasets 1.11.1.dev0
transformers transformers

And the Wav2vec2Processor returns a dict with input values as key and a list as value. inside the list it has NumPy arrays.

Also here’s the notebook I’m using, not sure if it’d be any help. Thanks

It looks like the fact it comes from the numpy array that has several dimensions. This looks like a bug since multidim arrays are supposed to be supported. Maybe the conversion from numpy to arrow has an issue - I’ll take a look

Thanks for reporting, I’ll let you know when there’s a fix

1 Like

Thanks a lot @lhoestq, that’s really helpful!
btw, I was wondering if there’s any wav2vec2 fine-tuning notebook for classification tasks available from the Hugging Face team?
I’ve found a lot of notebooks from HF (especially by @sgugger) which helped me a lot on NLP tasks, so if there’re some available for audio, that’d be truly helpful!
(also, gently pinging @patrickvonplaten if he has some notebooks on it)


1 Like

FYI the latest release of datasets 1.12.1 fixes the ArrowInvalid error :slight_smile: