Python311\Lib\site-packages\diffusers\models\transformers\transformer_flux.py", line 212, in forward
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
^^^^^^^^^^^^^^^^^^^
UnboundLocalError: cannot access local variable âcontext_attn_outputâ where it is not associated with a value
Reason - Attention from attention_processor.py outputs a variable of length 1.
What is the problem?
1 Like
As the error message says, a strange-looking tensor of length is being returned from Attention. Itâs similar to the issue below, but I donât know if itâs because of xformers.
)
joint_attention_kwargs = joint_attention_kwargs or {}
# Attention.
attention_outputs = self.attn(
hidden_states=norm_hidden_states,
encoder_hidden_states=norm_encoder_hidden_states,
image_rotary_emb=image_rotary_emb,
**joint_attention_kwargs,
)
if len(attention_outputs) == 2:
attn_output, context_attn_output = attention_outputs
elif len(attention_outputs) == 3:
attn_output, context_attn_output, ip_attn_output = attention_outputs
# Process attention outputs for the `hidden_states`.
attn_output = gate_msa.unsqueeze(1) * attn_output
hidden_states = hidden_states + attn_output
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
opened 03:59AM - 01 Dec 24 UTC
bug
stale
needs-code-example
### Describe the bug
I have encountered an error when trying to sample from S⌠D3 transformer component, where line 208 in `attention.py` is asking for two outputs but only one is given:
```
File "/home/p2p/pytorch/mc3/envs/marigold/lib/python3.10/site-packages/diffusers/src/diffusers/models/attention.py", line 208, in forward
attn_output, context_attn_output = self.attn(
ValueError: not enough values to unpack (expected 2, got 1)
```
### Reproduction
https://colab.research.google.com/drive/1CkgjIaaClKUk4ZC-g_RR578BfFE24gps#scrollTo=1xcDHPHd56WH
```
import logging
from diffusers.models.transformers import SD3Transformer2DModel
import torch
from typing import Optional
from torch.nn import Conv2d
from torch.nn.parameter import Parameter
device = torch.device("cuda")
cat_latents = torch.randn(1, 16, 128, 128).to(device)
timesteps = torch.tensor([453.9749]).to(device)
prompt_embeds = torch.randn(1, 154, 4096).to(device)
pooled_prompt_embeds = torch.randn(1, 2048).to(device)
model = SD3Transformer2DModel().to(device)
model.enable_xformers_memory_efficient_attention()
model_pred = model(
hidden_states=cat_latents,
timestep=timesteps,
encoder_hidden_states=prompt_embeds,
pooled_projections=pooled_prompt_embeds,
return_dict=False,
)[0]
```
### Logs
```shell
Traceback (most recent call last):
File "/home/p2p/src/trainer/trainer.py", line 347, in train
model_pred = self.model.transformer(
File "/home/p2p/pytorch/mc3/envs/marigold/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/home/p2p/pytorch/mc3/envs/marigold/lib/python3.10/site-packages/diffusers/src/diffusers/models/transformers/transformer_sd3.py", line 347, in forward
encoder_hidden_states, hidden_states = block(
File "/home/p2p/pytorch/mc3/envs/marigold/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl
return forward_call(*args, **kwargs)
File "/home/p2p/pytorch/mc3/envs/marigold/lib/python3.10/site-packages/diffusers/src/diffusers/models/attention.py", line 208, in forward
attn_output, context_attn_output = self.attn(
ValueError: not enough values to unpack (expected 2, got 1)
```
### System Info
- đ¤ Diffusers version: 0.32.0.dev0
- Platform: Linux-6.1.0-26-amd64-x86_64-with-glibc2.36
- Running on Google Colab?: No
- Python version: 3.10.12
- PyTorch version (GPU?): 2.0.1+cu117 (True)
- Flax version (CPU?/GPU?/TPU?): not installed (NA)
- Jax version: not installed
- JaxLib version: not installed
- Huggingface_hub version: 0.26.2
- Transformers version: 4.46.1
- Accelerate version: 0.34.2
- PEFT version: 0.13.2
- Bitsandbytes version: not installed
- Safetensors version: 0.4.3
- xFormers version: 0.0.21
- Accelerator: NVIDIA RTX A6000, 49140 MiB
- Using GPU in script?: <fill in>
- Using distributed or parallel set-up in script?: <fill in>
### Who can help?
@yiyixuxu @sayakpaul @DN6 @asomoza @yiyixuxu @sayakpaul