error:
error: ` Truncation was not explicitly activated but `max_length` is provided a specific value, please use `truncation=True` to explicitly truncate examples to max length. Defaulting to 'longest_first' truncation strategy. If you encode pairs of sequences (GLUE-style) with the tokenizer you can select this strategy more precisely by providing a specific strategy to `truncation`.`
fix:
def pipeline_tests_():
print(f'\n--> pipeline_tests_()')
import torch
from transformers import pipeline
# pipe = pipeline(model="gpt2", device_map="auto", model_kwargs={"load_in_8bit": True})
pipe = pipeline(model="gpt2", device_map="auto", model_kwargs={"load_in_4bit": True})
# output = pipe("This is a cool example!", do_sample=True, top_p=0.95, temperature=0.8, max_length=50)
output = pipe("This is a cool example!", do_sample=True, top_p=0.95, temperature=0.8, max_length=50, truncation=True)
print(f'\n{output=}')
print(f'{len(output)=}')
output = pipe("This is a cool example!", do_sample=True, top_p=0.95, temperature=0.8, max_length=50, num_return_sequences=4, truncation=True)
print(f'\n{output=}')
print(f'{len(output)=}')
output = pipe("This is a cool example!", do_sample=False, top_p=0.95, temperature=0.8, max_length=50, num_return_sequences=4, num_beams=5, truncation=True)
print(f'\n{output=}')
print(f'{len(output)=}')
print()