@John6666 Okay so I get these
and this
[{'score': None,
'label': 'wall',
'mask': <PIL.Image.Image image mode=L size=1080x1080>},
{'score': None,
'label': 'building',
'mask': <PIL.Image.Image image mode=L size=1080x1080>},
{'score': None,
'label': 'sky',
'mask': <PIL.Image.Image image mode=L size=1080x1080>},
{'score': None,
'label': 'tree',
'mask': <PIL.Image.Image image mode=L size=1080x1080>},
{'score': None,
'label': 'mountain',
'mask': <PIL.Image.Image image mode=L size=1080x1080>},
{'score': None,
'label': 'water',
'mask': <PIL.Image.Image image mode=L size=1080x1080>},
{'score': None,
'label': 'fence',
'mask': <PIL.Image.Image image mode=L size=1080x1080>},
{'score': None,
'label': 'rock',
'mask': <PIL.Image.Image image mode=L size=1080x1080>},
{'score': None,
'label': 'signboard',
'mask': <PIL.Image.Image image mode=L size=1080x1080>},
{'score': None,
'label': 'bridge',
'mask': <PIL.Image.Image image mode=L size=1080x1080>},
{'score': None,
'label': 'boat',
'mask': <PIL.Image.Image image mode=L size=1080x1080>},
{'score': None,
'label': 'pier',
'mask': <PIL.Image.Image image mode=L size=1080x1080>}]
Is this what I move to here?
import datasets
import glob
IMAGES = glob.glob("D:\cropped_image_1080x1080\img_0")
SEG_MAPS = glob.glob("D:.\img_0.jpg")
dataset = datasets.Dataset.from_dict({
"image": IMAGES,
"label": SEG_MAPS
},
features=datasets.Features({
"image":datasets.Image(),
"label":datasets.Image()
})
)
I still don’t get how I move the fifth member of this pipeline
that I got from here
from transformers import pipeline
semantic_segmentation = pipeline("image-segmentation", "shi-labs/oneformer_ade20k_swin_large")
to id2label, do I need to label it as implied in here?