Hi @banucool
You can initialize the T5Model
class and only forward pass through it’s encoder. The first element of the returned tuple is the final hidden states.
model = T5Model.from_pretrained("t5-small")
tok = T5Tokenizer.from_pretrained("t5-small")
enc = tok("some text", return_tensors="pt")
# forward pass through encoder only
output = model.encoder(
input_ids=enc["input_ids"],
attention_mask=enc["attention_mask"],
return_dict=True
)
# get the final hidden states
emb = output.last_hidden_state
The shape of emb
will be (batch_size, seq_len, hidden_size)