Language model gradients sensitive to target value/length

I’m trying out a method to identify important training samples for a given test-time prediction. What it essentially boils down to is calculating the gradient of a test-time prediction and ordering the training samples by their gradient similarity to the test-time gradient. My interpretation is that it attempts to answer the question of which training samples has nudged/influenced the models parameters as similarly a given test-time prediction would have had it been a training sample. It’s not all too important for the question but I hope it makes sense.

The model I’m using is T5 and here’s where I run into trouble. What I observe is that very similar (input, target)-pairs produce vastly different gradients in terms of cosine similarity.

Let me provide an example starting with a sanity check on a dummy example which should be easily reproducible (helper functions are found below):

MODEL_PATH = "t5-small"
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_PATH)
tokenizer = T5TokenizerFast.from_pretrained(MODEL_PATH)

sentence_1 = get_grads(model,
                       inputs="I like to eat <extra_id_0>",
                       targets="<extra_id_0> pizza")

sentence_2 = get_grads(model,
                       inputs="I like to eat <extra_id_0>",
                       targets="<extra_id_0> pizza")

cos_sim(sentence_1, sentence_2)
>>> 1.0

which is totally expected as the same sample would affect the model’s parameters exactly the same. Now changing sentence_2s target slightly to "<extra_id_0> pizza.", i.e. with a period at the end, I get a cosine similarity of 0.46.

What I don’t quite understand is that the introduction of a seemingly insignificant token can change the gradients that much?

Any help, hints and guidance in understanding this is greatly appreciated!

My helper functions:

def get_grads(model, tokenizer, inputs, targets):
  device = "cuda" if torch.cuda.is_available() else "cpu"
  outputs = model(**{k: for k, v in tokenizer(text=inputs, 

  grads = torch.autograd.grad(outputs.loss, model.parameters())
  return[grad.flatten() for grad in grads])

def cos_sim(a, b):
    return, b)/(np.linalg.norm(a)*np.linalg.norm(b))