If it’s done manually it means I wrote my own uhh… what’s the format again for the labels, json? I need to lookup which one of these files are the label.
Ah okay, what we’re trying to do is to do pretrain with the previous labeled dataset so i didn’t have to label it myself right, but even so the labels are not what I expecting like the image are supposed to be representing a river but it only have something like cars or sky. Is that the purpose of the link we’re following?
the details are like this
the code
`panoptic_segmentation = pipeline(“image-segmentation”, “facebook/mask2former-swin-large-cityscapes-panoptic”)
results3 = panoptic_segmentation(image)
results3
results2_river = panoptic_segmentation(image_river)
results2_river
`
the output
[{'score': 0.986528,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=1420x1080>},
{'score': 0.907122,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=1420x1080>},
{'score': 0.976372,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=1420x1080>},
{'score': 0.991359,
'label': 'fence',
'mask': <PIL.Image.Image image mode=L size=1420x1080>},
{'score': 0.999967,
'label': 'vegetation',
'mask': <PIL.Image.Image image mode=L size=1420x1080>},
{'score': 0.964172,
'label': 'pole',
'mask': <PIL.Image.Image image mode=L size=1420x1080>},
{'score': 0.902589,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=1420x1080>},
{'score': 0.999337,
'label': 'building',
'mask': <PIL.Image.Image image mode=L size=1420x1080>},
{'score': 0.939224,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=1420x1080>},
{'score': 0.994364,
'label': 'wall',
'mask': <PIL.Image.Image image mode=L size=1420x1080>},
{'score': 0.97558,
'label': 'road',
'mask': <PIL.Image.Image image mode=L size=1420x1080>},
{'score': 0.973715,
'label': 'car',
'mask': <PIL.Image.Image image mode=L size=1420x1080>},
{'score': 0.999913,
'label': 'sky',
'mask': <PIL.Image.Image image mode=L size=1420x1080>}]