I always get lower precision following the MRPC example, what’s the reason?
python run_glue.py \
--model_name_or_path bert-base-cased \
--task_name $TASK_NAME \
--do_train \
--do_eval \
--max_seq_length 128 \
--per_device_train_batch_size 32 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir /tmp/$TASK_NAME/
and get
12/18/2020 17:16:38 - INFO - __main__ - ***** Eval results mrpc *****
12/18/2020 17:16:38 - INFO - __main__ - eval_loss = 0.5318707227706909
12/18/2020 17:16:38 - INFO - __main__ - eval_accuracy = 0.7622549019607843
12/18/2020 17:16:38 - INFO - __main__ - eval_f1 = 0.8417618270799347
12/18/2020 17:16:38 - INFO - __main__ - eval_combined_score = 0.8020083645203595
12/18/2020 17:16:38 - INFO - __main__ - epoch = 3.0
12/18/2020 16:45:29 - INFO - __main__ - ***** Eval results mrpc *****
12/18/2020 16:45:29 - INFO - __main__ - eval_loss = 0.47723284363746643
12/18/2020 16:45:29 - INFO - __main__ - eval_accuracy = 0.8063725490196079
12/18/2020 16:45:29 - INFO - __main__ - eval_f1 = 0.868988391376451
12/18/2020 16:45:29 - INFO - __main__ - eval_combined_score = 0.8376804701980294
12/18/2020 16:45:29 - INFO - __main__ - epoch = 3.0
12/18/2020 16:34:37 - INFO - __main__ - ***** Eval results mrpc *****
12/18/2020 16:34:37 - INFO - __main__ - eval_loss = 0.571368932723999
12/18/2020 16:34:37 - INFO - __main__ - eval_accuracy = 0.6838235294117647
12/18/2020 16:34:37 - INFO - __main__ - eval_f1 = 0.8122270742358079
12/18/2020 16:34:37 - INFO - __main__ - eval_combined_score = 0.7480253018237863
12/18/2020 16:34:37 - INFO - __main__ - epoch = 3.0
GPU: GTX 1080
transformers: 4.1.0
Torch: 1.6.0
python: 3.8
Server: Ubuntu 18.04