I’m trying to render an image on AWS Inferentia2 using Optimum NeuronX. I have converted juggernautXL_v8Rundiffusion model to the Diffusers format using sdxl-to-diffusers-v2 and then to Neuron format with:
optimum-cli export neuron \
--model juggernautXL_v8Rundiffusion \
--task stable-diffusion-xl \
--batch_size 1 --num_images_per_prompt 1 \
--height 1024 --width 1024 \
juggernautXL_v8Rundiffusion_neuron
Then I’m trying to generate an image with this Python code:
from optimum.neuron import NeuronStableDiffusionPipeline
stable_diffusion = NeuronStableDiffusionPipeline.from_pretrained(model_path)
image = stable_diffusion(prompt).images[0]
But it fails with:
RuntimeError: forward() is missing value for argument 'argument_4'.
Declaration: forward(__torch__.torch_neuronx.xla_impl.trace.___torch_mangle_11.NeuronModule self,
Tensor argument_1, Tensor argument_2, Tensor argument_3, Tensor argument_4, Tensor argument_5)
-> ((Tensor))
Any idea why? Do I need any other parameters other than prompt
in the inference step?