Tokenizer extremely slow when deployed to a container

Hey there, I need some help with the performance of my classifier.

I have trained a new model for text classification using the pre-trained BERT model (bert-base-uncased). I created a class that handles the text transformations from raw to model-ready data. I am currently using the bert-base-uncased tokenizer for processing the raw text. When running my code on a Jupyter Notebook or on my local machine, I can get predictions on new, unseen data in a matter of seconds. When I deploy my model to a Docker container it is extremely slow, to the point where the container times out even before producing the predictions. From debugging my code, I can see that it gets stuck in the tokenizer part. I have already tried batch encoding, single encoding, using the fast tokenizer from the AutoTokenizer library, and no matter what I do or change, the performance does not improve. I am not using GPUs, but I am trying to infer data from a relatively small dataset (approx. 100 data points). This is how I defined my class for transforming my raw dataset into a model-ready dataset:

class textDataset(Dataset):
    # Constructor Function
    def __init__(self, features, tokenizer, max_len):
        self.features = features
        self.tokenizer = tokenizer
        self.max_len = max_len

    # Length method
    def __len__(self):
        return len(self.features)

    # get item method
    def __getitem__(self, item):
        feature = str(self.features[item])

        # Encoded format to be returned
        encoding = self.tokenizer.encode_plus(
            feature,
            add_special_tokens=True,
            max_length=self.max_len,
            return_token_type_ids=False,
            pad_to_max_length=True,
            return_attention_mask=True,
            truncation=True,
            return_tensors='pt',
        )

        return {
            'feature': feature,
            'input_ids': encoding['input_ids'].flatten(),
            'attention_mask': encoding['attention_mask'].flatten(),
        }

Function for creating a PyTorch dataset:

def create_data_loader(df, tokenizer, max_len, batch_size):
    ds = textDataset(
        features=df.feature.to_numpy(),
        tokenizer=tokenizer,
        max_len=max_len
    )

    return DataLoader(
        ds,
        batch_size=batch_size,
        # num_workers=4
    )

Tokenizers used (I tried a few to see if performance would improve):

tokenizer = BertTokenizer.from_pretrained("bert-base-uncase")
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncase", use_fast=True)

Class for model instance:

class textClassifier(nn.Module):

    # Constructor class
    def __init__(self, n_classes):
        super(textClassifier, self).__init__()
        self.bert = BertModel.from_pretrained("bert-base-uncased"), return_dict=False)
        self.drop = nn.Dropout(p=0.3)
        self.out = nn.Linear(self.bert.config.hidden_size, n_classes)

    # Forward propagation class
    def forward(self, input_ids, attention_mask):
        _, pooled_output = self.bert(
            input_ids=input_ids,
            attention_mask=attention_mask
        )
        #  Add a dropout layer
        output = self.drop(pooled_output)
        return self.out(output)

Function for predicting new values (which is where it gets stuck):

def get_predictions(model, data_loader):
    model = model.eval()

    feature_texts = []
    predictions = []
    prediction_probs = []

    with torch.no_grad():
        for d in data_loader:
            texts = d["feature"]
            input_ids = d["input_ids"]
            attention_mask = d["attention_mask"]

            # Get outputs
            outputs = model(
                input_ids=input_ids,
                attention_mask=attention_mask
            )
            _, preds = torch.max(outputs, dim=1)

            feature_texts.extend(texts)
            predictions.extend(preds)
            prediction_probs.extend(outputs)

    predictions = torch.stack(predictions).cpu()
    prediction_probs = torch.stack(prediction_probs).cpu()

    return feature_texts, predictions, prediction_probs

And finally the main part where I call all the functions:

# Create data loader from processed df to use for model inference

            # Instantiating PyTorch model
            model = textClassifier(len(class_names))
            batch_size = 16
            prod_data_loader = create_data_loader(
                features_transformed_df,
                tokenizer,
                max_len,
                batch_size)

            feature_texts, pred_ids, pred_probs = get_predictions(model, prod_data_loader)

I am relatively new to Transformers/PyTorch and I am having a hard time figuring out why my code is so slow when deployed to a container or an AWS lambda. Would anyone know the reason for this performance issue? Am I doing anything in the code above that is compromising my performance? Thanks a lot in advance.