I’ve been trying to train my own sequence classification model but get this error when trying to do it
I’ve been following this write up blog/Lora-for-sequence-classification-with-Roberta-Llama-Mistral.md at main · huggingface/blog · GitHub
RuntimeError: mat1 and mat2 shapes cannot be multiplied (416x4096 and 1x8388608)
can some one help me solve this.
compute_dtype = getattr(torch, “float16”)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=compute_dtype,
bnb_4bit_use_double_quant=False,
)
llama_model = AutoModelForSequenceClassification.from_pretrained(
pretrained_model_name_or_path=llama_checkpoint,
num_labels=2,
device_map= device, #"auto",
offload_folder="offload",
trust_remote_code=True,
quantization_config=bnb_config
)
Llama config
LlamaConfig {
"_name_or_path": "meta-llama/Llama-2-7b-hf",
"architectures": [
"LlamaForCausalLM"
],
"attention_bias": false,
"attention_dropout": 0.0,
"bos_token_id": 1,
"eos_token_id": 2,
"hidden_act": "silu",
"hidden_size": 4096,
"initializer_range": 0.02,
"intermediate_size": 11008,
"max_position_embeddings": 4096,
"model_type": "llama",
"num_attention_heads": 32,
"num_hidden_layers": 32,
"num_key_value_heads": 32,
"pad_token_id": 2,
"pretraining_tp": 1,
"quantization_config": {
"_load_in_4bit": true,
"_load_in_8bit": false,
"bnb_4bit_compute_dtype": "float16",
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_use_double_quant": false,
"llm_int8_enable_fp32_cpu_offload": false,
"llm_int8_has_fp16_weight": false,
"llm_int8_skip_modules": null,
"llm_int8_threshold": 6.0,
"quant_method": "bitsandbytes"
},
"rms_norm_eps": 1e-05,
"rope_scaling": null,
"rope_theta": 10000.0,
"tie_word_embeddings": false,
"torch_dtype": "float16",
"transformers_version": "4.38.0.dev0",
"use_cache": false,
"vocab_size": 32000
}