Error Iterating over KeyDataset

from datasets import load_dataset, Audio, Dataset
from transformers.pipelines.pt_utils import KeyDataset
from transformers import AutoModelForSpeechSeq2Seq, AutoModelForCausalLM, AutoProcessor, pipeline

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=416,
    batch_size=16,
    return_timestamps=False,
    torch_dtype=torch_dtype,
    device=device,
    generate_kwargs={"language": "hindi"},
)

audio_dataset = Dataset.from_dict({"audio": audio_files}).cast_column(
    "audio", Audio(sampling_rate=16000)
)

for i, out in tqdm(
        enumerate(pipe(KeyDataset(audio_dataset, "audio"))), total=len(audio_files)
    ):
    pass

On iterating over the dataset, I get the following error

ValueError: The elements of the batch contain different keys. Cannot batch them ({'input_features', 'num_frames', 'is_last'} != {'input_features', 'is_last'})

I checked that all files in audio_files exist and are not empty.