Hmm? What dataloader?
Some weights of OneFormerForUniversalSegmentation were not initialized from the model checkpoint at shi-labs/oneformer_ade20k_swin_tiny and are newly initialized: ['model.text_mapper.prompt_ctx.weight', 'model.text_mapper.text_encoder.ln_final.bias', 'model.text_mapper.text_encoder.ln_final.weight', 'model.text_mapper.text_encoder.positional_embedding', 'model.text_mapper.text_encoder.token_embedding.weight', 'model.text_mapper.text_encoder.transformer.layers.0.layer_norm1.bias', 'model.text_mapper.text_encoder.transformer.layers.0.layer_norm1.weight', 'model.text_mapper.text_encoder.transformer.layers.0.layer_norm2.bias', 'model.text_mapper.text_encoder.transformer.layers.0.layer_norm2.weight', 'model.text_mapper.text_encoder.transformer.layers.0.mlp.fc1.bias', 'model.text_mapper.text_encoder.transformer.layers.0.mlp.fc1.weight', 'model.text_mapper.text_encoder.transformer.layers.0.mlp.fc2.bias', 'model.text_mapper.text_encoder.transformer.layers.0.mlp.fc2.weight', 'model.text_mapper.text_encoder.transformer.layers.0.self_attn.in_proj_bias', 'model.text_mapper.text_encoder.transformer.layers.0.self_attn.in_proj_weight', 'model.text_mapper.text_encoder.transformer.layers.0.self_attn.out_proj.bias', 'model.text_mapper.text_encoder.transformer.layers.0.self_attn.out_proj.weight', 'model.text_mapper.text_encoder.transformer.layers.1.layer_norm1.bias', 'model.text_mapper.text_encoder.transformer.layers.1.layer_norm1.weight', 'model.text_mapper.text_encoder.transformer.layers.1.layer_norm2.bias', 'model.text_mapper.text_encoder.transformer.layers.1.layer_norm2.weight', 'model.text_mapper.text_encoder.transformer.layers.1.mlp.fc1.bias', 'model.text_mapper.text_encoder.transformer.layers.1.mlp.fc1.weight', 'model.text_mapper.text_encoder.transformer.layers.1.mlp.fc2.bias', 'model.text_mapper.text_encoder.transformer.layers.1.mlp.fc2.weight', 'model.text_mapper.text_encoder.transformer.layers.1.self_attn.in_proj_bias', 'model.text_mapper.text_encoder.transformer.layers.1.self_attn.in_proj_weight', 'model.text_mapper.text_encoder.transformer.layers.1.self_attn.out_proj.bias', 'model.text_mapper.text_encoder.transformer.layers.1.self_attn.out_proj.weight', 'model.text_mapper.text_encoder.transformer.layers.2.layer_norm1.bias', 'model.text_mapper.text_encoder.transformer.layers.2.layer_norm1.weight', 'model.text_mapper.text_encoder.transformer.layers.2.layer_norm2.bias', 'model.text_mapper.text_encoder.transformer.layers.2.layer_norm2.weight', 'model.text_mapper.text_encoder.transformer.layers.2.mlp.fc1.bias', 'model.text_mapper.text_encoder.transformer.layers.2.mlp.fc1.weight', 'model.text_mapper.text_encoder.transformer.layers.2.mlp.fc2.bias', 'model.text_mapper.text_encoder.transformer.layers.2.mlp.fc2.weight', 'model.text_mapper.text_encoder.transformer.layers.2.self_attn.in_proj_bias', 'model.text_mapper.text_encoder.transformer.layers.2.self_attn.in_proj_weight', 'model.text_mapper.text_encoder.transformer.layers.2.self_attn.out_proj.bias', 'model.text_mapper.text_encoder.transformer.layers.2.self_attn.out_proj.weight', 'model.text_mapper.text_encoder.transformer.layers.3.layer_norm1.bias', 'model.text_mapper.text_encoder.transformer.layers.3.layer_norm1.weight', 'model.text_mapper.text_encoder.transformer.layers.3.layer_norm2.bias', 'model.text_mapper.text_encoder.transformer.layers.3.layer_norm2.weight', 'model.text_mapper.text_encoder.transformer.layers.3.mlp.fc1.bias', 'model.text_mapper.text_encoder.transformer.layers.3.mlp.fc1.weight', 'model.text_mapper.text_encoder.transformer.layers.3.mlp.fc2.bias', 'model.text_mapper.text_encoder.transformer.layers.3.mlp.fc2.weight', 'model.text_mapper.text_encoder.transformer.layers.3.self_attn.in_proj_bias', 'model.text_mapper.text_encoder.transformer.layers.3.self_attn.in_proj_weight', 'model.text_mapper.text_encoder.transformer.layers.3.self_attn.out_proj.bias', 'model.text_mapper.text_encoder.transformer.layers.3.self_attn.out_proj.weight', 'model.text_mapper.text_encoder.transformer.layers.4.layer_norm1.bias', 'model.text_mapper.text_encoder.transformer.layers.4.layer_norm1.weight', 'model.text_mapper.text_encoder.transformer.layers.4.layer_norm2.bias', 'model.text_mapper.text_encoder.transformer.layers.4.layer_norm2.weight', 'model.text_mapper.text_encoder.transformer.layers.4.mlp.fc1.bias', 'model.text_mapper.text_encoder.transformer.layers.4.mlp.fc1.weight', 'model.text_mapper.text_encoder.transformer.layers.4.mlp.fc2.bias', 'model.text_mapper.text_encoder.transformer.layers.4.mlp.fc2.weight', 'model.text_mapper.text_encoder.transformer.layers.4.self_attn.in_proj_bias', 'model.text_mapper.text_encoder.transformer.layers.4.self_attn.in_proj_weight', 'model.text_mapper.text_encoder.transformer.layers.4.self_attn.out_proj.bias', 'model.text_mapper.text_encoder.transformer.layers.4.self_attn.out_proj.weight', 'model.text_mapper.text_encoder.transformer.layers.5.layer_norm1.bias', 'model.text_mapper.text_encoder.transformer.layers.5.layer_norm1.weight', 'model.text_mapper.text_encoder.transformer.layers.5.layer_norm2.bias', 'model.text_mapper.text_encoder.transformer.layers.5.layer_norm2.weight', 'model.text_mapper.text_encoder.transformer.layers.5.mlp.fc1.bias', 'model.text_mapper.text_encoder.transformer.layers.5.mlp.fc1.weight', 'model.text_mapper.text_encoder.transformer.layers.5.mlp.fc2.bias', 'model.text_mapper.text_encoder.transformer.layers.5.mlp.fc2.weight', 'model.text_mapper.text_encoder.transformer.layers.5.self_attn.in_proj_bias', 'model.text_mapper.text_encoder.transformer.layers.5.self_attn.in_proj_weight', 'model.text_mapper.text_encoder.transformer.layers.5.self_attn.out_proj.bias', 'model.text_mapper.text_encoder.transformer.layers.5.self_attn.out_proj.weight', 'model.text_mapper.text_projector.layers.0.0.bias', 'model.text_mapper.text_projector.layers.0.0.weight', 'model.text_mapper.text_projector.layers.1.0.bias', 'model.text_mapper.text_projector.layers.1.0.weight']
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
Some weights of OneFormerForUniversalSegmentation were not initialized from the model checkpoint at shi-labs/oneformer_ade20k_swin_tiny and are newly initialized because the shapes did not match:
- model.transformer_module.decoder.class_embed.weight: found shape torch.Size([151, 256]) in the checkpoint and torch.Size([3, 256]) in the model instantiated
- model.transformer_module.decoder.class_embed.bias: found shape torch.Size([151]) in the checkpoint and torch.Size([3]) in the model instantiated
- criterion.empty_weight: found shape torch.Size([151]) in the checkpoint and torch.Size([3]) in the model instantiated
You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
OneFormerForUniversalSegmentation(
(model): OneFormerModel( ...
OneFormerProcessor:
- image_processor: OneFormerImageProcessor {
"class_info_file": "ade20k_panoptic.json",
"do_normalize": true,
"do_reduce_labels": false, ...